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Abstract. We investigate the electronic transmission properties of polymers which consist of
a dimerized backbone chain with randomly distributed side chains of length 2m. The system
is connected to perfect left-hand and right-hand metallic leads, and the transmission spectrum
is computed. We find 2m − 2 high-transmission and 2 low-transmission peaks which reflect
resonant extended states in the random system and the gap edges of the dimerized backbone
chain, respectively. The temperature dependence of the conductivity is shown to be very sensitive
to the position of the Fermi level. The tunnelling current at zero temperature in the presence of
a bias voltage gives a region of negative differential conductivity, which is due to a competition
between the opening of a transmission window by the applied bias and the suppression of the
transmission peaks by the electric field.

1. Introduction

The electronic transport properties of conjugated polymers have attracted a lot of attention
during the last decade. The most striking feature of these soft materials is the enhancement
of their conductivity upon doping. The room temperature conductivity of heavily doped
conjugated polymers reaches very high values—even ones typical of metals [1–3]—despite
the fact that these structures are topologically disordered. Moreover, in the theory of
disordered systems there is no completely satisfactory theoretical model which can explain
these distinguishing electronic transport properties, mostly because the random nature of
polymers is usually incompatible with the observed high conductivity. For example, it is
also insufficient to represent the complicated polymer structures via simple one-dimensional
(1D) disordered systems, since the phenomenon of Anderson localization leads to vanishing
conductivity in this case. A more faithful representation of the polymer topology requires
dimensionality higher than one. In view of this, single-chain windings [4], random interchain
couplings etc [5–8] have been considered. This consideration involved possible mechanisms
which lead to the reported almost metallic behaviour, and quasi-extended, rather than
localized, eigenstates. This confirms the fact that conjugated polymers are complex quasi-
1D disordered systems. Recently, fractal structures with dimension slightly above one have
also been considered for modelling transport in conducting polymers with non-metallic
conductivity [9].

The aim of this paper is to represent conjugated polymers by another possible random
structure, which also deviates from the perfect 1D chain. This involves an ordered host-
backbone chain with many side chains attached at random positions. In order to keep
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the topology fairly simple, we ignore windings of a single chain and random interchain
couplings. Moreover, the randomly attached side chains are taken to consist of a fixed
number (2m) of atoms. A typical polymer material with side chains has been synthesized
by vapour-deposition polymerization in the laboratory, and the electro-optic coefficient was
measured [10].

The electronic transmission for the dimerized polymer structure considered (a backbone
with randomly attached side chains) is obtained by placing the system between two metallic
leads [11]. Our study of the transmission spectrum shows 2m−2 high-transmission peaks at
certain energies, exactly where internal resonant extended states occur in the absence of the
leads. We also obtain smaller peaks at two additional energies which correspond to the gap
edges of the pure host-backbone dimerized chain. The smaller peaks correspond to a residual
periodicity effect, which persists in the random structure considered. The extended states
obtained might be unexpected, since the scaling theory predicts localization of all states in
quasi-1D disordered systems [12]; however, delocalization at specific energies is possible
due to the fact that extra scattering at the positions where the side chains are attached self-
cancels. This mechanism is similar to that known for dimer correlated disordered systems
[13, 14], where the waves scattered backward from every dimer scatterer become zero
at specific energies, due to quantum interference. The random-side-chain polymer system
considered illustrates the presence of resonant extended states and also how such delocalized
states can affect the transport properties of the system.

The unusual transmission spectrum for the random polymer structure considered
drastically modifies the temperature dependence of the conductivity and can also influence
the I–V characteristics. In particular, we obtain non-linear conductivity when the applied
voltage is not small and the correspondingI–V characteristics enter a regime of negative
differential conductivity. This is attributed to the interplay between two opposite effects of
the bias voltage: an increase in the number of states which contribute to the conductivity
and the suppression of the transmission peaks, since the applied electric field destroys the
resonant extended states in the system.

2. Model and formulae

We study polymers with randomly distributed side chains, sandwiched between two semi-
infinite metallic leads [11]. The total Hamiltonian of the system is

H = Hb + Hs + Hl + Hc (1)

where Hb and Hs are the host-backbone and side-chain Hamiltonians, andHl and Hc

represent the metallic leads and the interfaces between the system and the leads.
The host backbone is modelled via the dimerized-chain Hamiltonian

Hb =
2N−1∑
n=1

{−[t − (−1)n1]C†
nCn+1 + HC

}
(2)

where C
†
n (Cn) is the electronic creation (annihilation) operator at thenth site of the

backbone, andt + 1 or t − 1 the hopping integral for two nearest-neighbour sites. We
assume that the host backbone consists of 2N sites having energy dispersion which is
described by the two subbands

E = ±2
√

t2 cos2 ka + 12 sin2 ka



Electronic transport in random-side-chain polymers 8051

with gap edges at±21. The 2m-length side chains are described by a similar Hamiltonian:

Hs =
∑
nk

{
2m−1∑
s=1

[−(t − (−1)s1)C†
s (nk)Cs+1(nk)

]− (t − 1)C
†
2m(nk)Cnk

+ HC

}
(3)

wherenk is the random host-backbone site at which the side chain is attached. The sitesnk

appear at random with concentrationp.
The non-interacting tight-binding Hamiltonian for the left-hand and right-hand metallic

leads is given by

Hl =
−1∑

n=−∞
(−t0C

†
nCn+1 + HC) +

∞∑
n=2N+1

(−t0C
†
nCn+1 + HC) (4)

where t0 is the hopping integral for two nearest-neighbour sites (set to unity in our
calculations), while the left-hand lead ceases at 0 and the right-hand lead starts at 2N + 1.
The energy spectrum ofHl is E = −2t0 cosk, assuming unit lattice spacinga = 1. In
addition, the hopping integrals for the two contacts are described by the interface term

Hc = −t1(C
†
0C1 + C

†
2NC2N+1 + HC). (5)

The disorder in the system arises because the side chains are attached at random
backbone sites with probabilityp. We also assume that no more than one side chain
is randomly attached (only at the odd backbone sites) in every unit cell. The electronic
transmission through the polymer structure considered can easily be computed by the
transfer-matrix method. For an incoming electron with energyE and unit site amplitude,
the wave function for the left-hand lead can be expressed as

an = eikinn + re−ikinn

for −∞ < n 6 0, wherer is the reflection amplitude. In the right-hand lead, the outgoing
wave function is

an = teikout (n−2N−1)

for 2N + 1 6 n < ∞, wheret is the transmission amplitude. The amplitudes at the sites
2N + 1 and 2N + 2 are expressed by(

a2N+2

a2N+1

)
= M̂out T̂M̂in

(
a0

a−1

)
(6)

where the matriceŝMin, M̂out and T̂ are explicitly derived in the appendix. Equation (6)
allows the computation of the transmission coefficient,T (E) = |t |2, at a given energyE,
for every random configuration. Then the temperature dependence of the conductivity can
be obtained from the Landauer formula [15]

σ(kT , µ) =
(∫ (

− ∂f

∂E

)
T (E) dE

)/(∫ (
− ∂f

∂E

)
(1 − T (E)) dE

)
(7)

wheref is the Fermi distribution function:

f = 1

e(E−µ)/kT + 1
.

The conductivityσ(kT , µ) is the linear response of the system to a small external field.
However, if the applied voltage is not small, we also expect non-linear components to
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merge into the total current. In this case we compute theI–V characteristics from the
semi-classical formula

I (V ) = eN0

∫ 2t0−eV

−2t0

ρ(E)v(E + eV )|t2|(f (E) − f (E + eV )) dE (8)

which was previously proposed for investigating tunnelling currents in semiconductor
superlattices [16]. The electron charge ise, the electronic density in the leadsN0, the
density of states of the leads is expressed as

ρ(E) = 1

π

√
4t2

0 − E2

andv(E) is the electron velocity in the leads obtained from the semi-classical relation

v(E) = 1

h̄

∂E

∂k
= 1

h̄

√
4t2

0 − E2.

Figure 1. The electronic transmission of a finite side-chain polymer structure withp = 0.5.
The backbone length is 2N = 200, the length of each side chain is 2m = 10 and the rest of the
parameters are:t = 1.0, 1 = 0.2, t1 = 0.8, with t0 = 1 which sets the energy unit.

3. Results

In figure 1, we plot the transmission spectrum of a side-chain polymer with 2N = 200
dimerized backbone sites and randomly distributed side chains of length 2m = 10, with
concentrationp = 0.5, taking averages over 1000 random configurations. In the appendix
it is shown that states with energies

El = ±
√

2 cos

(
lπ

m

)
(t2 − 12) + 2(t2 + 12) l = 1, 2, . . . , m − 1
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are perfectly extended in the absence of the leads. However, the system studied here, with
finite random side chains, is inserted into perfect left-hand and right-hand chains so that
at everyEl the transmission coefficient becomes large close to, but not exactly at, unity.
The reason for the system not reaching transmission exactly equal to unity is the additional
scattering of the incident waves at the two contacts, between the side-chain polymer and
the leads. This phase mismatch makes the system atEl nearly, rather than completely,
transparent. On the other hand, we find two extra transmission peaks of considerable
magnitude close to the gap edges±21 of the backbone chain. These peaks persist for
various lengths 2m of the side chains if the length 2N of the backbone is not extremely
long.

In order to explain our results, we consider thep = 0 limit, where Hs = 0 and the
spectrum consists of two subbands and a gap. At the gap edges (±21), the wave functions
have smaller amplitudes at the odd sites (where the side chains are randomly attached for
p 6= 0) than at the even sites. This leads to weaker scattering by the side chains in the
random (p 6= 0) case, so two peaks emerge in the transmission spectrum. They demonstrate
a residual periodicity in the finite random sample. When the backbone length increases,
these peaks at the gap edges diminish. For example, for 2N = 2000 the two peak values
become of the order of∼10−5.

Figure 2. The variation of the dimensionless conductivity versus temperature for three systems
with the Fermi levelsµ = 0.35, µ = 0.4 andµ = 0.45, corresponding to the points marked by
a filled circle, square and triangle, respectively, in figure 1. The rest of the parameters are the
same as for figure 1.

In the remainder of this work we show how the complicated transmission spectrum
obtained can drastically modify the electronic transport properties of the system. We focus
just on cases with Fermi levels around+21, which represents n+-type doping. In figure 2
we present the dimensionless conductivity versus temperature for the Fermi levelsµ = 0.35,
µ = 0.40 andµ = 0.45 at the positions marked by the closed circle, square and triangle
on the small peak of figure 1. On the logarithmicx-axis we have the temperature and on
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the lineary-axis the conductivityσ . The large zero-temperature conductivity values are
marked by the filled circle, rectangle and triangle for the three values ofµ studied. For
small but non-zero temperatures (e.g., atkT = 0.0005), with the Fermi levelµ = 0.40, at
the peak, the conductivityσ—unlike the case for the other twoµ-values—is much larger
than its corresponding zero-temperature value. An increase in temperature is seen to give
plateaus, which indicate saturation for the contribution from the first peak. At even higher
temperature the effect of the first peak vanishes and the curves fall again, approaching
close-lying values. Then, for even larger temperatures, the next peak will come into play
and the curves will rise again (not shown in the figure).

Figure 3. The I–V characteristics of a finite-side-chain polymer at zero temperature obtained
with the same parameters as for figure 1.

The Landauer formula used applies only to the linear response of the system under an
applied electric field. We also consider interesting non-linear effects for relatively large
applied voltages. In this case, we calculate theI–V curves, and the results are shown in
figure 3, for zero temperature and a system withµ = 0.40; they were obtained by averaging
over 100 random configurations. A regime of negative differential conductivity appears.
This can be viewed as a result of the competition between the two opposite effects due to the
voltage: the increase in the number of states which contribute to the tunnelling current and
the suppression of the transmission peaks, since the external voltage violates the conditions
for the existence of resonant extended states.

4. Discussion

We have considered the influence of randomly distributed side chains on the electronic
transport properties of polymers. For an infinitely long backbone, with side chains of
length 2m, we obtain exactly 2m − 2 resonant extended states. In the case of finite-side-
chain polymers connected to two semi-infinite metal systems, the transmission peaks for
the resonant extended states are slightly reduced, because of a phase mismatch induced by
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the interface. On the other hand, for the polymer geometry considered, two smaller peaks
appear at around±21, which are a sign of a residual periodicity from the backbone. The
2m − 2 peaks reach their maximum value of unity, only in the absence of the leads, while
the two smaller peaks vanish for an infinite system.

The transmission spectrum obtained is shown to affect the conductivity of doped
polymers dramatically, when the Fermi level falls around the peaks. The zero-temperature
conductivity is large, and its temperature dependence shows a plateau in some temperature
range, due to the saturation of the contribution from states in the first peak. We also obtain
theI–V characteristics of the system by studying the non-linear behaviour of the tunnelling
current for a large external voltage. In this case we find a regime of negative differential
conductivity which arises from the competition between the increase in the number of states
which are involved in the tunnelling due to the applied voltage and the suppression of the
transmission peaks due to the violation of the condition for the presence of extended states
by the external field.

In summary, we have shown resonant transmission states, or transmission peaks, for a
random-side-chain polymer system with leads. The polymer is represented by side chains
randomly attached to a dimerized host chain. Apart from the interesting characteristics of
the transmission spectrum that are obtained, we also find some experimentally measurable
quantities, such as the temperature-dependent conductivity, which can be used to explore
the expected almost metallic nature of conjugated polymers. Our results support the view
that conducting polymers can be viewed as low-dimensional disordered substances, having
very distinctive conducting properties.
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Appendix. Calculation of the resonant extended states

The one-electron wave-function coefficients for the two nearest-neighbour unit cells of the
dimerized-backbone HamiltonianHb are related via(

a2n+3

a2n+2

)
=


E2

(t + 1)(t − 1)
− t + 1

t − 1

E

t + 1

−E

t + 1

−(t − 1)

t + 1

( a2n+1

a2n

)
= M̂cell

(
a2n+1

a2n

)
.

(A1)

If n = 0 or n = N − 1 the t − 1 should be replaced byt1 to include the contacts. If a side
chain is attached at thenkth site of the backbone, the coefficients of the wave function at
this site are related toank−1, ank+1 anda2m(nk) by the equation

Eank
= −(t − 1)(ank−1 + a2m(nk)) − (t + 1)ank+1.

A virtual site with index 0 and amplitudea0(nk) = 0 is assumed at the free end of the side
chain. This condition gives the relationship between the coefficients at the backbone sites
which are adjacent to the attached side chain:(

ank+2

ank+1

)
= M̂cell

(
1 0
q 1

)(
ank

ank−1

)
= M̂side

(
ank

ank−1

)
(A2)
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where

q =

{[
M̂cell

]m}
(2,1){[

M̂cell

]m}
(1,1)

.

Finally, the matrixT̂ in equation (6) is a product ofN matrices:

T̂ = · · · M̂cell · · · M̂side · · ·︸ ︷︷ ︸
N

(A3)

which are eitherM̂cell or M̂side, depending on the random configuration. At the two ends
of the backbone,t − 1 should be replaced byt1 in M̂cell or M̂side.

The value ofq is the same for every side chain and, becauseq = 0 at some energies,
this leads toM̂side = M̂cell . At these energies the corresponding states are extended and,
with the help of Chebyshev polynomials, puttingq = 0 gives

Tr(M̂cell) = 2 cos
lπ

m

for l = 1, 2, . . . , m − 1, or[
M̂cell

]
21

= 0.

The condition obtained gives resonant extended states for the random structure considered
at E = 0 or

E2 = 2 cos

(
lπ

m

)
(t2 − 12) + 2(t2 + 12)

whenE lies in the band. Thus, theE = 0 state is located in the gap and is not a resonant
state. The rest of the energiesE obtained lie within the band and correspond to resonant
extended states. For side chains ofm unit cells, we find exactly 2m−2 such resonant states.

In the presence of an applied voltage, the potential at the backbone sitei becomesVi ,
due to the additional electric field. We assume that the side chains are perpendicular to the
backbone, so the potential at every site of the side chains is the same as that at the backbone
site to which it is connected; hence

M̂cell =


(E + eV2n+1)(E + eV2n+2)

(t + 1)(t − 1)
− t + 1

t − 1

E + eV2n+2

t + 1

−E + eV2n+1

t + 1
− t − 1

t + 1

 (A4)

and

M̂side = M̂cell

(
1 0
q 1

)
.

The relation ofq to M̂cell is the same when there is a voltage applied as when no voltage
is applied. Special care should be taken at the 0th and(2N + 1)th, sites where

M̂in =
(

−E

t1
− t0

t1
1 0

)
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and

M̂out =
(

−E + eV

t0
− t1

t0
1 0

)
.

In the presence of a voltage,q is no longer independent of the position, so the resonant
extended states are no longer allowed due to the violation of the resonance condition.
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